Threonine 286 of fatty acid desaturase 7 is essential for ω-3 fatty acid desaturation in the green microalga Chlamydomonas reinhardtii

نویسندگان

  • Jong-Min Lim
  • Jayaraman Vikramathithan
  • Kwon Hwangbo
  • Joon-Woo Ahn
  • Youn-Il Park
  • Dong-Woog Choi
  • Won-Joong Jeong
چکیده

Omega-3 fatty acid desaturases catalyze the conversion of dienoic fatty acids (C18:2 and C16:2) into trienoic fatty acids (C18:3 and C16:3), accounting for more than 50% of the total fatty acids in higher plants and the green microalga Chlamydomonas reinhardtii. Here, we describe a Thr residue located in the fourth transmembrane domain of fatty acid desaturase 7 (FAD7) that is essential for the biosynthesis of ω-3 fatty acids in C. reinhardtii. The ω-3 fatty acid deficiency in strain CC-620, which contains a putative missense mutation at Thr286 of CrFAD7, was recovered by the overexpression of CC-125 CrFAD7. A Ser substitution in position 286 was able to partially complement the phenotype of the ω-3 fatty acid deficiency, but other substitution variants, such as Tyr, His, Cys, and Gly, failed to do so. Prediction of the phosphorylation target site revealed that Thr286 may be phosphorylated. Analysis of the structural conformation of CC-620 CrFAD7 via topology prediction (and bends in the helix) shows that this missense mutation may collapse the catalytic structure of CrFAD7. Taken together, this study suggests that Thr286 is essential for the maintaining the catalytic structure of CrFAD7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii

BACKGROUND Nutrient limitation, such as nitrogen depletion, is the most widely used method for improving microalgae fatty acid production; however, these harsh conditions also inhibit algal growth significantly and even kill cells at all. To avoid these problems, we used artificial microRNA (amiRNA) technology as a useful tool to manipulate metabolic pathways to increase fatty acid contents eff...

متن کامل

Long-term administration of olanzapine induces adiposity and increases hepatic fatty acid desaturation protein in female C57BL/6J mice

Objective(s): Weight gain and metabolic disturbances such as dyslipidemia, are frequent side effects of second-generation antipsychotics, including olanzapine. This study examined the metabolic effects of chronic olanzapine exposure. In addition, we investigated the hepatic fatty acid effects of olanzapine in female C57BL/6J mice fed a normal diet.Materials and Methods: Female C57BL/6J mice ora...

متن کامل

Higher Plant Cytochrome b5 Polypeptides Modulate Fatty Acid Desaturation

BACKGROUND Synthesis of polyunsaturated fatty acids (PUFAs) in the endoplasmic reticulum of plants typically involves the fatty acid desaturases FAD2 and FAD3, which use cytochrome b(5) (Cb5) as an electron donor. Higher plants are reported to have multiple isoforms of Cb5, in contrast to a single Cb5 in mammals and yeast. Despite the wealth of information available on the roles of FAD2 and FAD...

متن کامل

Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast....

متن کامل

Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803

BACKGROUND Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015